Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1365327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737555

RESUMO

Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes women's quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment.


Assuntos
Endometriose , Vesículas Extracelulares , Endometriose/patologia , Endometriose/metabolismo , Endometriose/terapia , Endometriose/diagnóstico , Humanos , Vesículas Extracelulares/metabolismo , Feminino , Endométrio/patologia , Endométrio/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Comunicação Celular/fisiologia
2.
Angiogenesis ; 27(1): 105-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032405

RESUMO

The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (µCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.


Assuntos
Regeneração Óssea , Crânio , Microtomografia por Raio-X , Crânio/diagnóstico por imagem , Crânio/irrigação sanguínea , Crânio/lesões , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Cicatrização
3.
Microvasc Res ; 148: 104518, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36894024

RESUMO

Assessing intravascular blood oxygen saturation (SO2) is crucial for characterizing in vivo microenvironmental changes in preclinical models of injury and disease. However, most conventional optical imaging techniques for mapping in vivo SO2 assume or compute a single value of the optical path-length in tissue. This is especially detrimental when mapping in vivo SO2 in experimental disease or wound healing models that are characterized by vascular and tissue remodeling. Therefore, to circumvent this limitation we developed an in vivo SO2 mapping technique that utilizes hemoglobin-based intrinsic optical signal (IOS) imaging combined with a vascular-centric estimation of optical path-lengths. In vivo arterial and venous SO2 distributions derived with this approach closely matched those reported in the literature, while those derived using the single path-length (i.e. conventional) approach did not. Moreover, in vivo cerebrovascular SO2 strongly correlated (R2 > 0.7) with changes in systemic SO2 measured with a pulse oximeter during hypoxia and hyperoxia paradigms. Finally, in a calvarial bone healing model, in vivo SO2 assessed over four weeks was spatiotemporally correlated with angiogenesis and osteogenesis (R2 > 0.6). During the early stages of bone healing (i.e. day 10), angiogenic vessels surrounding the calvarial defect exhibited mean SO2 that was elevated by10 % (p < 0.05) relative to that observed at a later stage (i.e., day 26), indicative of their role in osteogenesis. These correlations were not evident with the conventional SO2 mapping approach. The feasibility of our wide field-of-view in vivo SO2 mapping approach illustrates its potential for characterizing the microvascular environment in applications ranging from tissue engineering to cancer.


Assuntos
Hiperóxia , Saturação de Oxigênio , Humanos , Oximetria/métodos , Oxigênio , Artérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...